Math 251 Midterm 2 Sample

Name:

This exam has 8 questions, for a total of 100 points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	10	
2	14	
3	14	
4	10	
5	10	
6	10	
7	12	
8	20	
Total:	100	

Question 1. (10 pts)

$$
f(x, y, z)=z \sqrt{y^{2}-x}
$$

(a) Find the gradient of the function $f(x, y, z)$

Solution:

$$
\begin{aligned}
\nabla f & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& =\left\langle-\frac{z}{2}\left(y^{2}-x\right)^{-1 / 2}, z y\left(y^{2}-x\right)^{-1 / 2}, \sqrt{y^{2}-x}\right\rangle
\end{aligned}
$$

(b) Find the maximum rate of change of $f(x, y, z)$ at the point $(5,3,1)$.

Solution: The maximum rate of change at $(5,3,1)$ is

$$
\|\nabla f(5,3,1)\|=\left\|\left\langle\frac{-1}{4}, \frac{3}{2}, 2\right\rangle\right\|=\frac{\sqrt{101}}{4}
$$

Question 2. (14 pts)

Given

$$
f(x, y)=x^{2} y-x^{2}-y^{2}
$$

Determine all local maximum, minimum and saddle points.

Solution: First, find all critical points. We need to solve

$$
\left\{\begin{array}{l}
f_{x}=2 x y-2 x=0 \\
f_{y}=x^{2}-2 y=0
\end{array}\right.
$$

Case 1: $x=0$, then from the second equation, we see

$$
y=0
$$

So $(0,0)$ is a critical point.
case 2: $x \neq 0$, then the first equation gives $y=1$. Now the second equation implies that $x^{2}=2$, so $x= \pm \sqrt{2}$. We have critical points

$$
(\pm \sqrt{2}, 1)
$$

Use the second derivative test,

$$
\begin{gathered}
f_{x x}=2 y-2 \\
f_{y y}=-2 \\
f_{x y}=2 x
\end{gathered}
$$

So

$$
D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=4-4 y-4 x^{2}
$$

(1) At $(0,0), D(0,0)=4$ and $f_{x x}(0,0)=-2$, so $(0,0)$ is a local max.
(2) At $(\pm \sqrt{2}, 1), D(\pm \sqrt{2}, 1)=-8<0$, so $(\pm \sqrt{2}, 1)$ are saddle points.

Question 3. (14 pts)

Use the Lagrange multiplier method to find the absolute extreme values of the function

$$
f(x, y)=x y
$$

with the constraint $x^{2}+4 y^{2}=8$.

Solution: The constraint is

$$
g(x, y)=x^{2}+4 y^{2}-8=0
$$

Apply the Lagrange multiplier method,

$$
\left\{\begin{array}{l}
f_{x}=\lambda g_{x} \\
f_{y}=\lambda g_{y} \\
g(x, y)=0
\end{array}\right.
$$

That is,

$$
\left\{\begin{array}{l}
y=\lambda(2 x) \\
x=\lambda(8 y) \\
x^{2}+4 y^{2}-8=0
\end{array}\right.
$$

Using the first two equations, we get

$$
16 \lambda^{2}=1
$$

So $\lambda= \pm(1 / 4)$.
Case 1: If $\lambda=1 / 4$, then $x=2 y$. Use the third equation to solve for x and y. We get two solutions

$$
(x, y)=(2,1) \text { or }(-2,-1)
$$

Case 2: If $\lambda=-(1 / 4)$, then $x=-2 y$. Use the third equation to solve for x and y. We get two solutions

$$
(x, y)=(-2,1) \text { or }(2,-1)
$$

So the absolute max is $f(2,1)=f(-2,-1)=2$, and the absolute min is $f(-2,1)=f(2,-1)=-2$.

Question 4. (10 pts)

Rewrite (but do not evaluate)

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}}(x+y) d y d x
$$

in polar coordinates.

Solution:

Notice that $y=\sqrt{2 x-x^{2}}$ gives

$$
x^{2}+y^{2}=2 x
$$

which is the circle centered at $(1,0)$ with radius 1 . In polar coordinates, we have

$$
r^{2}=2 r \cos \theta \Longrightarrow r=2 \cos \theta
$$

And the other bound $y=0$ tells us that the region is above y-axis. Now x goes from 0 to 2 tells us that the region is actual the entire upper half of the disk.

$$
\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta}(r \cos \theta+r \sin \theta) r d r d \theta
$$

Question 5. (10 pts)

Rewrite (but do not evaluate)

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}}(x+z) d z d x d y
$$

in spherical coordinates.

Solution: From the bounds, we can see that the region is exactly everything between the cone $z=\sqrt{x^{2}+y^{2}}$ and the upper hemisphere $z=\sqrt{2-x^{2}-y^{2}}$.

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}}(\rho \sin \varphi \cos \theta+\rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \varphi d \theta
$$

Question 6. (10 pts)

Evaluate the following integral by switching the order of integration.

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y
$$

Solution:

$$
\begin{aligned}
& \int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y \\
& =\int_{0}^{1} \int_{0}^{x^{2}} e^{x^{3}} d y d x \\
& =\int_{0}^{1} e^{x^{3}} x^{2} d x=\cdots \\
& \text { use substitution } u=x^{3} . \\
& =\left.\frac{e^{x^{3}}}{3}\right|_{x=0} ^{x=1}=\frac{e-1}{3}
\end{aligned}
$$

Question 7. (12 pts)

Find the area of the region above the circle $x^{2}+y^{2}=4 y$ and below the circle $x^{2}+y^{2}=4$.

Solution: use polar coordinates. We shall write the given equations in polar coordinates.

$$
\begin{gathered}
x^{2}+y^{2}=4 y \quad \Rightarrow \quad r^{2}=4 r \sin \theta \text {, i.e. } r=4 \sin \theta \\
x^{2}+y^{2}=4 \quad \Rightarrow \quad r=2
\end{gathered}
$$

We need to use these two equations to find out the bounded for r and θ. You should certainly draw a picture of this region first. Set them equal to each other and we get

$$
4 \sin \theta=2
$$

Therefore, $\theta=\pi / 6$ or $5 \pi / 6$.

$$
\begin{aligned}
\text { Area } & =\iint_{D} d A \\
& =\int_{\pi / 6}^{5 \pi / 6} \int_{0}^{2} r d r d \theta+\int_{0}^{\pi / 6} \int_{0}^{4 \sin \theta} r d r d \theta+\int_{5 \pi / 6}^{\pi} \int_{0}^{4 \sin \theta} r d r d \theta
\end{aligned}
$$

or equivalently, by symmetry,

$$
\begin{aligned}
\text { Area } & =\iint_{D} d A \\
& =2 \int_{\pi / 6}^{\pi / 2} \int_{0}^{2} r d r d \theta+2 \int_{0}^{\pi / 6} \int_{0}^{4 \sin \theta} r d r d \theta \\
& =\frac{4 \pi}{3}+\frac{4 \pi}{3}-2 \sqrt{3} \\
& =\frac{8 \pi}{3}-2 \sqrt{3}
\end{aligned}
$$

E is the solid that is between the upper half of the sphere $x^{2}+y^{2}+z^{2}=4$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
(a) Write the volume of E as a triple integral in $x y z$-coordinates.

Solution: Solve z from $x^{2}+y^{2}+z^{2}=4$ to get the upper bound for z. The circle of intersection between the cone and the sphere is $x^{2}+y^{2}=2$ at $z=\sqrt{2}$. We can get this by plugging $z=\sqrt{x^{2}+y^{2}}$ into the equation $x^{2}+y^{2}+z^{2}=4$. From this we know that, the projection of the solid E to the $x y$-plane is the disk centered at $(0,0)$ with radius $\sqrt{2}$.

$$
\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-y^{2}}}^{\sqrt{2-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} d z d x d y
$$

(b) Write the volume of E as a triple integral in cylindrical coordinates.

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} r d z d r d \theta
\end{aligned}
$$

(c) Write the volume of E as a triple integral in spherical coordinates.

Solution:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2} \rho^{2} \sin \varphi d \rho d \varphi d \theta
$$

(d) Use one of your answers from part $(a),(b)$ and (c) to calculate the volume of E.

Solution: Use spherical coordinates

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2} \rho^{2} \sin \varphi d \rho d \varphi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{\rho^{3}}{3}\right|_{\rho=0} ^{\rho=2} \sin \varphi d \varphi d \theta \\
& =\frac{8}{3}\left(1-\frac{\sqrt{2}}{2}\right) 2 \pi
\end{aligned}
$$

